Mining hybrid sequential patterns and sequential rules

نویسندگان

  • Yen-Liang Chen
  • Shih-Sheng Chen
  • Ping-Yu Hsu
چکیده

The problem addressed in this paper is to discover the frequently occurred sequential patterns from databases. Basically, the existing studies on finding sequential patterns can be roughly classified into two main categories. In the first category, the discovered patterns are continuous patterns, where all the elements in the pattern appear in consecutive positions in transactions. The second category is to mine discontinuous patterns, where the adjacent elements in the pattern need not appear consecutively in transactions. Although there are many researches on finding either kind of patterns, no previous researches can find both of them. Neither can they find the discontinuous patterns formed of several continuous sub-patterns. Therefore, we define a new kind of patterns, called hybrid pattern, which is the combination of continuous patterns and discontinuous patterns. In this paper, two algorithms are developed to mine hybrid patterns, where the first algorithm is easy but slow while the second complicated but much faster than the first one. Finally, the simulation result shows that our second algorithm is as fast as the currently best algorithm for mining sequential patterns. r 2002 Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Both Positive and Negative Impact-Oriented Sequential Rules from Transactional Data

Traditional sequential pattern mining deals with positive correlation between sequential patterns only, without considering negative relationship between them. In this paper, we present a notion of impact-oriented negative sequential rules, in which the left side is a positive sequential pattern or its negation, and the right side is a predefined outcome or its negation. Impact-oriented negativ...

متن کامل

Algorithms and Measures in Sequence Data Mining

Sequential pattern mining, first introduced in [1], is one of the most challenging problems in data mining [3]. It aims to extract the relationships between occurrences of sequential itemsets i.e. to look for any specific order of the itemsets. Sequential pattern mining has large applications, such as the analysis of DNA sequences, stock marketing, web access patterns, transactional databases, ...

متن کامل

Mining Complete Hybrid Sequential Patterns

discovered that the set of frequent hybrid sequential patterns obtained by previous researches is incomplete, due to the inapplicability of the Apriori principle. We design and implement the CHSPAM algorithm to remedy the problem. CHSPAM first builds the Supplemented Frequent One Sequence itemset (SFOS) to collect items that may appear in a frequent hybrid sequential pattern. It then constructs...

متن کامل

Mining Unexpected Sequential Patterns and Implication Rules

As common criteria in data mining methods, the frequency-based interestingness measures provide a statistical view of the correlation in the data, such as sequential patterns. However, when we consider domain knowledge within the mining process, the unexpected information that contradicts existing knowledge on the data has never less importance than the regularly frequent information. For this ...

متن کامل

An efficient data mining approach for discovering interesting knowledge from customer transactions

Mining association rules and mining sequential patterns both are to discover customer purchasing behaviors from a transaction database, such that the quality of business decision can be improved. However, the size of the transaction database can be very large. It is very time consuming to find all the association rules and sequential patterns from a large database, and users may be only interes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Syst.

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2002